GEOG 2215 – INTRODUCTION TO EARTH OBSERVATION AND ANALYSIS (F19)

Instructor: Dr. Muditha Heenkenda Office location: RC 2006E Office hours: Mon – 1.00 pm to 3.00 pm Wed – 10.00 am to 12.00 pm Lab Instructor: Jason Freeburn Office location: RC 2004

Email: muditha.heenkenda@lakeheadu.ca Em

Email: jason.freeburn@lakeheadu.ca

Course Description:

Introduction to Earth Observation and Analysis course will introduce fundamentals of aerial photogrammetry including vertical and oblique photography, photo scale, mission planning, photo interpretation and stereo vision. Students become familiar with the basic image interpretation principles and aerial photography applications. The state-of-the-art remote sensing techniques such as stereo image acquisition, drone mapping and LiDAR remote sensing will also be explored within this course.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- understand the basic principles of photogrammetry/remote sensing;
- describe the general procedure of aerial photography/UAV mission planning;
- identify photo interpretation techniques including stereo viewing and their applications; and
- successfully apply different image processing techniques for data extraction using aerial images and LiDAR point clouds.

Learning Resources:

Recommended (Chapter 2 and 3): Lillesand, T.M., Kiefer, R.W., and Chipman, J.W., 2015. *Remote Sensing and Image Interpretation*, 6th Edition (New Jersey: Wiley), ISBN 978-1-118-34328-9

ebook for renting: <u>https://www.wiley.com/en-</u> ca/Remote+Sensing+and+Image+Interpretation%2C+7th+Edition-p-9781118919477

Reading materials from the course website

Grading:

Lab exercises	50%	
Midterm exam	25%	(Oct 24 th)
Final exam	25%	(Dec 5 th)

Course Expectations/Student Responsibilities:

- 1. Attendance is expected for each lecture and lab unless communicated with the instructor ahead of time.
- 2. Late Assignments receive a deduction of 10% per day unless an extension is agreed to with the instructor prior to the due date. After class assignments are graded and returned, late assignments receive a zero grade but must be satisfactorily completed to receive credit in the course.
- 3. **Participation** is expected in all class discussions, group work and collaborative efforts.
- 4. **Exams** (a) absences from illness, compassionate reasons or representing the university off-campus, supported by written documentation will be accepted as sufficient evidence to allow a rewrite of a missed test.

(b) If you miss an exam for any reason other than those deemed acceptable in Lakehead University calendar, then you will be given the opportunity of an essay-based makeup exam that is significantly longer and more difficult.

Course Schedule:

Week starting	Торіс	Lab exercise	
from			
Sept. 2	No classes		
9	Introduction to Photogrammetry	Accessing historical and other	
	History of Photography	photo products (hard copies	
	Electromagnetic spectrum	and online)	
16	Elements of image interpretation, Image	Image interpretation (natural),	
	interpretation keys (classification keys,	ecological land classification,	
	elimination keys etc), applications of image	landforms, drainage/channel	
	interpretation (natural/rural phenomena)	patterns	
23	Principles of chemical photography, film	Prairie landscape, four types	
	development, photo exposure and color	of photography films, Search	
	theory	and compare different types	
	Photo acquisition systems (analogue and	of aerial cameras	
	digital), charged couple devices, different		
	types of digital cameras		
30	Principles of Photogrammetry – geometry of	Calculating scales, units of	
	vertical/oblique aerial photo, photo scale,	measurements, difference	
	ortho photo	between an aerial photo and	
		ortho photo	
Oct 7	Single photo measurements, coordinate	Single photo measurements	
	systems, relief displacement, shadow length		
	and height of objects		
14	Reading break no classes		
21	Review and Midterm test		

28	Stereo vision and stereo photo	Stereo photo interpretation
	measurements (photo base, parallax, height),	and measurements
	surface modelling using overlap photos	
Nov 4	Introduction to UAV photography, spatial	Developing a flight plan
	resolution, mission planning	including ground coverage,
		no. flight lines, photos,
		overlap etc.
11	3D products and 3D visualization from	Create Digital Surface
	UAV imagery	Models, Digital Elevation
		Models, ortho mosaic and
		point clouds using UAV
		images
18	Introduction to LiDAR Remote Sensing	Explore a LiDAR point cloud
		for creating different 3D
		products
25	Introduction to LiDAR – different	Explore a LiDAR point cloud
	applications	for creating different 3D
		products
Dec 2	Review and Final exam	

Note that this document is subjected to change pending unforeseen circumstances.