GEOG 4231 – REMOTE SENSING (F19)

Instructor: Dr. Muditha Heenkenda

Constructor: Jason Freeburn

Constructo

Office hours: Mon - 1.00 pm to 3.00 pm

Wed-10.00 am to 12.00 pm

Course Description:

The course: Remote Sensing will introduce the fundamentals of the basic physical principle of remote sensing. The course is designed to stimulate the current remote sensing activities in natural resource management. Students become familiar with the basic image processing techniques for image pre-processing and data extraction. The lab exercises include many commonly used digital image processing tasks and utilization of ENVI software. A term paper will be introduced for allowing the opportunity to increase students' knowledge on a specific application of remote sensing technology.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- understand the basic physical principle of remote sensing;
- describe the general procedure (big picture) of remote sensing;
- identify different types of remote sensing data, sensors and platforms and their applications;
- apply radiometric and atmospheric corrections for images; and
- successfully apply different image processing techniques for data extraction using ENVI software.

Learning Resources:

Required: Lillesand, T.M., Kiefer, R.W., and Chipman, J.W., 2015. *Remote Sensing and Image Interpretation*, 6th Edition (New Jersey: Wiley), ISBN 978-1-118-34328-9

ebook for renting: https://www.wiley.com/en-

ca/Remote+Sensing+and+Image+Interpretation%2C+7th+Edition-p-9781118919477

Grading:

Term paper abstract 5% (Abstract and five references due on Oct 9th)

Term paper 25% (Full paper due on Dec 4th)

Lab exercises 20%

Midterm exam 25%

Final exam 25%

Course Expectations/Student Responsibilities:

- 1. **Attendance** is expected for each lecture and lab unless communicated with the instructor ahead of time.
- 2. Late Assignments receive a deduction of 10% per day unless an extension is agreed to with the instructor prior to the due date. After class assignments are graded and returned, late assignments receive a zero grade but must be satisfactorily completed to receive credit in the course.
- 3. **Participation** is expected in all class discussions, group work and collaborative efforts.
- 4. **Exams** (a) Student must obtain a minimum average grade of 50% on exams. If your exam average is not above 50% on these two exams, the lab and term paper marks will be dropped and your final mark will be based on the exams only.
 - (b) If you miss an exam for any reason other than those deemed acceptable in Lakehead University calendar, then you will be given the opportunity of an essay-based makeup exam that is significantly longer and more difficult.
- 5. **Citations Style:** For this course, please use the APA citation style. You can visit --------- for help with your citations.

Course Schedule:

Week	Торіс	Lab exercise	Reading
starting			
from			
Sept. 2	No classes		
9	Introduction to Remote Sensing	No lab this week –	Chapter 1.1 – 1.7
		literature search for term	
		paper topic	
16	Electromagnetic energy, spectral	Introduction to ENVI	Chapter 1.8 – 1.12
	signatures	software, image display	
		and creating spectral	
		signatures	
23	Image and sensor characteristics	Online data catalogues,	Chapters 4 and 5
	Earth Observation satellites	data acquisition and	
		display	
30	Atmospheric interactions, image	Image pre-processing,	Chapter 7.1 - 7.6
	corrections (geometric and	atmospheric and	
	radiometric)	radiometric corrections	
Oct 7	Image	Image enhancement –	Chapter 7.1 - 7.6
	enhancement/pansharpening	contrast stretching and	
	Image transformations and	filtering, pan sharpening	
	spectral indices	and creating indices	
14	Reading break no classes		
21	Midterm test		
28	Digital image classification –	Image classification and	Chapter 7.7 – 7.16
	supervised and unsupervised	accuracy assessment	
	classifications, accuracy		
	assessment		
		•	•

Nov 4	Object Based Image Analysis and	Object Based Image	Chapter 7.17
		Analysis using ENVI	
		software	
11	Change detection and biophysical	Analyzing percentage of	Chapter 7.18 – 7.23
	modelling	vegetation coverage over	
		a large area using NDVI	
18	Microwave and LiDAR Remote	RADAR and LiDAR data	Chapter 6
	Sensing	applications	
25	Applications of Remote	Explore how to utilize	Chapter 8
	Sensing/Review	remote sensing for	
		different applications	
		(group assignment, to be	
		presented in class), final	
		exam review	
Dec 2	Final exam		
	Term paper due on Dec 4 th .		

Note that this document is subjected to change pending unforeseen circumstances.